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FURTHER RESULTS ON APPROXIMATE INERTIAL MANIFOLDS
FOR THE FITZHUGH-NAGUMO MODEL

SIMONA CRISTINA NARTEA a∗ AND ADELINA GEORGESCU b

ABSTRACT. For two particular choices of the three parameters in the FitzHugh-Nagumo
model the equilibrium points are found. The corresponding phase portrait around them is
graphically represented allowing us to delimit an absorbing domain. Then the Jolly-Rosa-
Temam numerical method is applied in order to study the approximate inertial manifold
for the model. To this aim the own numerical code of the first author is used.

1. Introduction

Consider the abstract evolution equation

du

dt
+Au = f(u), (1)

with the initial condition u(0) = u0. With it we can associate the semigroup {S(t)}t≥0 on
a Banach space E, where S(t) : u0 → u(t), u(·) is the solution of (1), with u(0) = u0, A
is a linear operator and f is a linear mapping.

An inertial manifold [1] M is a finite-dimensional Lipschitz manifold, positively in-
variant (i.e. S(t)M⊂M, t ≥ 0) and which exponentially attracts all orbits of (1).

The concept of inertial manifold has been introduced in 1985 by C. Foias, G. R. Sell
and R. Temam in the context of dissipative evolution equations [2, 3, 4, 5, 6].

Remind several facts in the theory of Navier-Stokes partial differential equations, used
by these specialists, which are the premises leading to this concept. In the following we
give three of them.

The first is the Galerkin-Faedo-Hopf method applied to the generalized form of these
equations in order to get existence and nonlinear stability results [7]. Accordingly, the
equations were approximated by those whose solutions were linear combinations of the
first n eigenvectors of the linear operator A. Further the projection of the approximate
equation on the space spanned by these linear combinations reduces the problem to a sys-
tem of n ordinary differential equations in the time-dependent Fourier coefficients in those
combinations. The key point in this approach is the fact that, given the good properties
of A, its eigenvectors formed a total set in the space of the given equations. Remark the
occurrence of finite dimension spaces in the infinite-dimension given problem.
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The second fact is related to the Lyapunov-Perron method and its Lyapunov-Schmidt
variant used in stability theory. According to this method, the Banach space of the problem
and its image through A are splitted into direct sums of finite-dimensional and infinite-
dimensional subspaces. The finite-dimensional subspaces in these sums are the kerA and
corangeA. Then one projection is defined on kerA to split the solution and one projec-
tion of equation, on corangeA and rangeA to obtain a finite-dimensional equation, and
an infinite-dimensional equation defined by a contraction for which a fixed point theorem
holds [8, 9]. Again all these are possible if A is good, e.g. it is a Fredholm operator. Re-
mark also the involvement of finite-dimensional spaces and the corresponding projections
on them.

A third fact occurs in dynamical systems theory and concerns the Axiom A attractors
defined by hyperbolic sets, i.e. sets contracting the phase space in some directions and di-
lating it in some others. The simplest hyperbolic set is the saddle point. As a consequence,
the asymptotic dynamics for large time is approaching that one along the unstable manifold
Wu of the saddle. In this sense, the asymptotic dynamics reduces to that on Wu and the
phase spaces is flattened alongWu. In the case of infinite-dimensional phase spaces ifWu

is finite-dimensional, the reduction is drastic: the infinite-dimensional dynamics generated
by partial differential equations is reduced to the finite-dimensional dynamics generated
by an equation on the manifold Wu. This result is very important for numerical analysis.

All these facts occur in the definition of the inertial manifold and its construction. In
addition, the inertial manifold enjoys the property that for every point of the phase space
of the given dynamical system there exists a point on this manifold such that the distance
between their trajectories decreases exponentially to zero.

We mention also that the Lipschitzianity of the inertial manifold and the fact that it
is the fixed point of the mapping defining the dynamics on this manifold occurs in the
reduction principle presented as early as 1964 in [10], of course in another context and
without defining and emphasizing the importance of the inertial manifold.

Many articles have been devoted to the construction of inertial manifolds. Most of
them provide existence results for these manifolds under the restrictive hypothesis of a
large gap in the spectrum of A. More exactly, the space E can be split into a direct sum
E = PE ⊕ QE, where P is a spectral projector and Q = I − P . Then the inertial
manifold is defined as the graph of a Lipschitz function Φ : PE → QE, determined by the
nonlinear term f which must be globally Lipschitz continuous and possesing the Lipschitz
constant small if compared with the spectral gap. This condition is called the spectral
gap condition. In general, in applications, f is not globally Lipschitz, but the equation
possesses an absorbing set, and f can be modified outside the absorbing set to become
globally Lipschitz. In this case, the inertial manifold is obtained as the graph of a function
Φ : B ⊂ PE → QE, where B is an open set.

The existence theories for inertial manifolds are not constructive and even when an
inertial manifold is known to exist, it might be not known its representation. This is why
useful substitutes to inertial manifolds, namely the approximate inertial manifolds and
exponential attractors, were formulated and constructive methods for them were advanced.
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An approximate inertial manifold (AIM) is a smooth finite dimensional manifold of
the phase space which attracts all orbits to a thin neighborhood of it in a finite time uni-
formly for initial conditions in a given bounded set. This neighborhood contains the global
attractor.

The global attractor is contained in any inertial manifold.
For the FitzHugh-Nagumo (FN) model, we truncate the equations to a ball of radius ρ,

to obtain the so-called prepared equation. Inside this ball, the dynamics is the same with
that of the given equation. For two cases, by means of a numerical method we study the
AIM for this model.

2. Jolly-Rosa-Temam algorithm

In [11] and [12] it was developed an algorithm for the computation of an inertial mani-
fold as a limit of a converging sequence of AIMs. This algorithm is based on a variant of
the Lyapunov-Perron method. It provides the sequence of AIMs with the dimension of the
manifold kept fixed.

2.1. Hypotheses. The assumptions presented below guarantee the existence of an inertial
manifold and also the convergence of the algorithm.

Consider the Cauchy problem u(0) = u0 for equation (1).
A1. The nonlinear term f is globally Lipschitz continuous from E into the Banach space
F , E ⊂ F ⊂ E , the injections being continuous, each space dense in the following one,
and E is a Banach space. It follows that |f(u)|F ≤M0 +M1|u|E , for M0 ≥ 0.
A2. The linear operator −A generates a strongly continuous semigroup {e−tA}t≥0 of
bounded operators on E such that e−tAF ⊂ E for all t > 0.
A3. There exist two sequences of numbers {λn}n1

n=n0
, {Λn}n1

n=n0
, n0 ∈ N, n1 ∈ N ∪∞

such that 0 < λn ≤ Λn, for all n0 ≤ n ≤ n1, and a sequence of finite-dimensional
projectors {Pn}n1

n=n0
such that PnE is invariant under e−tA for t ≥ 0, and {e−tA|PnE}t≥0

can be extended up to a strongly continuous semigroup {e−tAPn}t∈R of bounded operators
on PnE with ‖e−tAPn‖L(E) ≤ K1e

−λnt, t ≤ 0, ‖e−tAPn‖L(F,E) ≤ K1λ
α
ne
−λnt, t ≤ 0,

QnE is positively invariant under the operators e−tA for t ≥ 0, with ‖e−tAQn‖L(E) ≤
K2e

−Λnt, t ≥ 0, ‖e−tAQn‖L(F,E) ≤ K2(t−α + Λαn)e−Λnt, t > 0, where K1,K2 ≥ 1
and 0 ≤ α < 1.
A4. The equation (1) has a continuous semiflow {S(t)}t≥0 in E.
A5. There exists K3 ≥ 0 independent of n such that ‖APn‖L(E) ≤ K3λn.
A6. A is invertible.
A7. The spectral gap condition Λn− λn > 3M1K1K2[λαn + (1 + γα)Λαn], holds for some

n ∈ N, where γα =


∞∫
0

e−rr−αdr, if 0 < α < 1,

0, if α = 0.

2.2. Approximate inertial manifolds. According to the authors in [11, 12], a single tra-
jectory on an invariant manifold can be found as the fixed point ϕ = ϕ(p) of a map-
ping T (·, p). The inertial manifold is the set of such trajectories M = graphΦ, where
Φ : PE → QE is defined by Φ(p) = Qϕ(p)(0), for all p ∈ PE.
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For the sequence of AIMs, the initial guess ϕ0(p0)(t) = p0 is considered, for all p0 ∈
PnE. By the Picard iteration, ϕj(p0) is obtained [11]. The AIMs areMj = graphΦj ,
where Φj(p0) = Qnϕj(p0)(0), for all p0 in PnE.

3. FitzHugh-Nagumo system

The Cauchy problem x(0) = x0, y(0) = y0 for the FN system is modelling the evolu-
tion of the electrical potential at the sinatrial point of the heart. The system is [13, 14]:

ẋ = c(x+ y − x3/3), ẏ = −(x− a+ by)/c, (2)

where x, y represents the electrical potential of cell membrane and the excitability respec-
tively, a, b are real parameters depending on the number of channels of the cell membrane
which are open for the ions of K+ and Ca++ and c > 0 is the relaxation parameter.

As in [15], we modify (2) in order to have it of the form (1) where the operator A is
defined by a diagonal matrix and to have the hypotheses A1-A7 satisfied.

The system (2) is of the form (1), whereA =
(
−c −c
1/c b/c

)
, f(x, y) =

(
−cx3/3
a/c

)
.

With these, (2) reads ẋ + Ax = f(x), where x = (x, y). The eigenvalues of A are
λ1 = b−c2−d

2c , λ2 = b−c2+d
2c , while the corresponding eigenvectors read v1 = (1,− c+λ1

c ),
v2 = (1,− c+λ2

c ). Here d =
√

(c2 + b)2 − 4c2.
In order to diagonalize A, we make the change of variables x = Tu, where u =

(u1, u2) and T is defined by the eigenvectors of A, namely

T =
(

1 1
− c+λ1

c − c+λ2
c

)
. Denote B = T−1AT and g(u) = T−1f(Tu) to obtain the

modified FitzHugh-Nagumo system

u̇ +Bu = g(u), (3)

which will be studied further, where the operator B is defined by the diagonal matrix(
λ1 0
0 λ2

)
, and

g(u) =

(
− (c2+b+d)(u1+u2)3c

6d + ca
d

(c2+b−d)(u1+u2)3c
6d − ca

d

)
=

(
− c2

3d (c+ λ2)(u1 + u2)3 + ca
d

− c2

3d (c+ λ1)(u1 + u2)3 − ca
d

)
.

The eigenvectors of B are w1 = e1 and w2 = e2, where (e1, e2) is the canonical basis
of R2.

3.1. The inertial form. In the case of the FN model we have E = R2. Consider the

projectors P =
(

1 0
0 0

)
, Q =

(
0 0
0 1

)
, such that PE and QE are the vector

spaces spanned by e1 and e2 respectively. Therefore PE and QE are the Ox-axis and
Oy-axis respectively. Denote p = Px and q = Qx. It follows that p and q have the forms
p = (p1, 0), q = (0, q2). Then, the system (2), in projection on Ox and Oy-axis, becomes

ṗ1 − cp1 − cq2 = −cp
3
1

3
, (4)

q̇2 +
1
c
p1 +

b

c
q2 =

a

c
. (5)
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For any given q2(0), the equation (5) has the unique solution

q2(t) = q2(0)e−
b
c t +

ac

b
(1− e− b

c t)− 1
c

∫ t

0

p1(τ)dτ.

Using it in (4), we obtain the inertial form

ṗ1 − cp1 − cq2(0)e−
b
c t +

ac

b
(1− e− b

c t)− 1
c

∫ t

0

p1(τ)dτ = −cp
3
1

3
.

It is an integro-differential equation with cubic nonlinearities and coefficients depending
on time at an exponential rate and, also, on the initial value q2(0).

Remark that (Qu)(t) is the difference at time t between two points of the trajectories
from E and PE respectively, if at t = 0 this difference was q2(0).

Due to the particular form of the eigenvectorsw1 andw2 ofB, denoting by the subscript
0 the initial value, we have u0 = p0 + q0 = (u10, u20) = (p10, 0) + (0, q20). Therefore
p10 = u10 and q20 = u20, which means that p0 belongs to the Ou1-axis and q0 to the
Ou2-axis.

For the form (2) of the FN system we do not succeded to fulfill A1-A7., but we were
successful in the case of system (3), in spite of its more complicated form. Thus, the
equations in projections of (3) read

u̇1 = −λ1u1 −
c2(c+ λ2)

3d
(u1 + u2)3 +

ac

d
, (6)

u̇2 = −λ2u2 +
c2(c+ λ1)

3d
(u1 + u2)3 − ac

d
. (7)

Eliminating the third order terms between (6) and (7) and multiplying the obtained equation
by eλ2t we get

(c+ λ2)
(
u2e

λ2t
)·

= −(c+ λ1)
(
u1e

λ1t
)·
e(−λ1+λ2)t − aeλ2t = 0,

leading, by integration over [0, t], to the expression

u2(t) = u20e
−λ2t + u10

c+ λ1

c+ λ2
e−λ2t − c+ λ1

c+ λ2
u1(t)−

c+ λ1

c+ λ2
(λ1 − λ2)e−λ2t

t∫
0

u1(τ)eλ2tdτ +
a

λ2(c+ λ2)
e−λ2t − a

λ2(c+ λ2)
.

showing that u2(t) is an affine function of u1(τ). Introducing it into (6), the inertial form
is obtained.

3.2. Phase portraits and absorbing domains. For the values a = 0.01, b = 5 and c = 1
of the parameters, there exist three equilibria:
(x(1), y(1)) = (−1.5479418, 0.3115884), corresponding to the eigenvalues λ1 = −1.6990686
and λ2 = −4.6970552, hence (x(1), y(1)) is an attractive node;
(x(2), y(2)) = (1.5504418,−0.3080884), with negative eigenvalues λ1 = −1.7075995
and λ2 = −4.6962702, hence (x(2), y(2)) is also an attractive node;
(x(3), y(3)) = (−0.0025, 0.0025), which corresponds to the eigenvalues λ1 = 0.8284207 >
0 and λ2 = −4.8284269 < 0, so (x(3), y(3)) is a saddle with the stable manifold close to
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the Oy-axis and the unstable one close to the Ox-axis. The phase portrait for these values
of the parameters is represented in fig. 1.

The two branches of the unstable manifold unite the saddle and one node, while the
stable manifold separate the basins of attraction of the two nodes. In order to apply the
Jolly-Rosa-Temam algorithm we choose as phase space the basin of attraction for each
node. For this space, each node becomes the global attractor.

Fig. 1. Phase portrait for the FN model, for a=0.01, b=5, c=1.

For a=0.01, b=0.9, c=0.1, the dynamical system associated to the FN model has only
one equilibrium (x̄, ȳ) = (0.0972415,−0.096935).
Indeed, in this case, the equilibrium equation reads as x3 + px + q = 0, where p =
3
b − 3 = 0.3333333 and q = − 3a

b = −0.3333333. Let us denote D = (p3 )3 + ( q2 )2

P = 3

√
− q2 +

√
D = 0.3854814 and Q = 3

√
− q2 −

√
D = −0.2882399. We find D =

0.0016495 > 0, so, this equation has only one real root, namely x̄ = P +Q ≈ 0.0972415.
Then ȳ = (a − x)/b = −0.096935 follows. The eigenvalues are λ1 = −0.0122086 < 0
are λ2 = −8.88874 < 0, therefore (x̄, ȳ) is an attractive node. The phase portrait for these
values of the parameters is represented in fig. 2.

Fig. 2. Phase portrait for the FN model, for a=0.01, b=0.9, c=0.1.

There is an absorbing domain, namely the disk of radius ρ, centered at (x̄, ȳ).
The phase portraits were drawn by using the software WINPP, created by Professor

B. Ermentrout from Pittsburg University for numerical simulations of the dynamics and
bifurcations [16].
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3.3. Phase portraits for the FitzHugh-Nagumo system. Two linearly independent eigen-
vectors of B are w1 = (1, 0) = e1 and w2 = (0, 1) == e2.

Let us represent phase portraits for the system (3) for the values of the parameters from
Section 3.2.

For a = 0.01, b = 5 and c = 1, this system becomes{
u̇1 = 0.8284271250 · u1 − 0.3434433618 · (u1 + u2)3 + 0.001767766952,
u̇2 = −4.828427122 · u2 + 0.01011002867 · (u1 + u2)3 − 0.001767766952.

(8)

Its phase portrait is represented in fig. 3.

Fig. 3. Phase portrait for the system (3), for a=0.01, b=5, c=1.

The system (8) has three eqilibria, corresponding to three eqilibria of the initial system:
(u(1)

1 , u
(1)
2 ) = (−1.53981,−0.00813235), with eigenvalues λ1 = −1.69651 and λ2 =

−4.69716, therefore (u(1)
1 , u

(1)
2 ) is an attractive node;

(u(2)
1 , u

(2)
2 ) = (1.543, 0.00743781), with the eigenvalues λ1 = −1.71018 and λ2 =

−4.69616, therefore (u(2)
1 , u

(2)
2 ) is an attractive node;

(u(3)
1 , u

(3)
2 ) = (−0.00213389,−0.000366117), with the eigenvalues λ1 = 0.828421 > 0

and λ2 = −4.82843 < 0, therefore (u(3)
1 , u

(3)
2 ) is a saddle.

For a = 0.01, b = 0.9 and c = 0.1, the system becomes{
u̇1 = −0.01125017617 · u1 − 0.03375105672 · (u1 + u2)3 + 0.001126443300,
u̇2 = −8.888749825 · u2 + 0.0004177233847 · (u1 + u2)3 − 0.001126443300.

(9)
Phase portrait for this system is represented in fig. 4.
The system (9) has only one echilibrium (ū1, ū2) = (0.892699,−0.00376404), with

the eigenvalues λ1 = −0.0913503 < 0 and λ2 = −8.8875 < 0, therefore (ū1, ū2) is an
attractive node.

3.4. Hypotheses of the algorithm for the modified FitzHugh-Nagumo model. In [15]
we prove that this model satisfies all hypotheses of the Jolly-Rosa-Temam algorithm.

Thus, the Lipschitz constant for each component of g = (g1, g2) is computed:
|g1(u)− g1(v)| ≤ c| c

2+b+d
d | · 6r2‖u− v‖, |g2(u)− g2(v)| ≤ c| c

2+b−d
d | · 6r2‖u− v‖.

We conclude that the first condition ‖g(u) − g(v)‖ ≤ Mr‖u − v‖ is satisfied, where
Mr = 6cr2

d max{|c2 + b+ d|, |c2 + b− d|}.
By direct computation, the following inequality is obtained
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Fig. 4. Phase portrait for system (3), for a=0.01, b=0.9, c=0.1.

‖g(u)‖ ≤ 1
d [4cr3 max{|c2 + b+ d|, |c2 + b− d|}+ c|a|].

The prepared equation is
du
dt

+Bu = gρ(u),

where gρ(u) = χρ(r)g(u), χρ(r) = χ( r
2

ρ2 ), χ ∈ C1(R+), χ/[0,1] = 1, χ/[2,∞) = 0, 0 ≤
χ(s) ≤ 1,∀s ∈ [1, 2]. Thus, we obtain ‖gρ(u)− gρ(v)‖ ≤Mρ‖u− v‖, where

Mρ =
max{|c2 + b+ d|, |c2 + b− d|}

d
· (48
√

2 + 12)cρ2 +
6c|a|
ρd

. (10)

Hence, the prepared equation satisfies the first condition.

For the third assumption, let us choose the projectorsP =
(

1 0
0 0

)
, Q =

(
0 0
0 1

)
.

We have ‖e−tBP‖ = e−λ1t and ‖e−tBQ‖ = e−λ2t. In order to satisfy the conditions A3,
we have to choose 0 < λn ≤ Λn. According to the eigenvalues of A are distinguish three
cases.
For 0 < λ1 ≤ λ2, we obtain
‖e−tBP‖ = e−λ1t ≤ 1e−λ1t, ∀t ≤ 0, ‖e−tBQ‖ = e−λ2t ≤ 1e−λ2t, ∀t ≥ 0. Therefore,
we can choose λn = λ1, Λn = λ2, K1 = 1,K2 = 1 and α = 0.
For λ1 ≤ 0 < λ2,
‖e−tBP‖ = e−λ1t ≤ e0 < 1e−10−1t, ∀t ≤ 0, ‖e−tBQ‖ = e−λ2t ≤ 1e−λ2t, ∀t ≥ 0. For
λn = 10−1, Λn = λ2, K1 = 1,K2 = 1 and α = 0, we have A3 satisfied if λ2 ≥ 10−1.
Finally, for λ1 < λ2 ≤ 0, we can not have the conditions A3 satisfied, thus, the algorithm
can not be applied.

For the fifth condition, there is obtained ‖BP‖ = |λ1|. In the first case, λ1 > 0, hence
‖BP‖ = λ1, λn = λ1, and K3 = 1. In the second case λ1 < 0 and we must have
‖BP‖ = −λ1 ≤ K3λn, where λn = 1

10 . In conclusion, there exists K3 ≥ 0 independent
of n such that ‖BP‖ ≤ K3λn, for λn defined as above, and, so, condition A5 holds.

The seventh condition (the spectral gap condition) reads
Λn−λn > 3MρK1K2[λαn+(1+γα)Λαn]. For α = 0, we have γα = 0, then, this condition
becomes

Λn − λn > 6Mρ, (11)

with Mρ defined in (10).
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3.5. AIMs for the prepared equation. As a phase space we will choose, the absorbing
basin for each node, like in Section 3.3, namely disks of radius ρ for a = 0.01, b = 5, c = 1
and R2 for a = 0.01, b = 0.9 and c = 0.1.

Using a program implemented by the first author in Scilab [17], let us construct the
AIMs. These manifolds are collections of trajectoriesMj = graphΦj , where Φj : PR2 →
QR2, i.e. Φj : R→ R, Φj(p0) = Qϕj(p0)(0).

Let us choose τj = c−j1 and Nj = c2
c1
j2j , where c1 = c2 = 0.01.

Although, for a = 0.01, b = 5, c = 1, all hypotheses are satisfied for all three equilibria,
our interest concerns only the two attractive nodes. Thus, all further computations will be
done only for these two points.

For the attractive node (1.543, 0.00743781), the eigenvalues of B are: λ1 = 1.71018
and λ2 = 4.69616. For the third condition, we are in the first case, thus λn = λ1 and Λn =
λ2. For the seventh condition, let us choose ρ = 1/20, and, then Mρ = 0.1931370848,
therefore (11) reads: 2.98598 > 1.1588, which is obviously satisfied.

Since ρ = 1/20, we choose the initial point (1.5, 0), belonging to the absorbing domain
intersected toOx, i.e. to the space PR2. The corresponding initial conditions for the given
system (2) are (1.5,−4.5 + 3

√
2).

In fig. 5, we represent graphically Qϕj as a function of time, with the initial conditions
u1(0) = 1.5, u2(0) = 0, for 7 iterations.

−0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0.00
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Fig. 5. Graphical representation, for the FN model, of q2 = |Qu| on the AIM as a
function of t, for 7 iterations (the graph of the last function is the upper curve) for

a=0.01, b=5, c=1; u1(0) = 1.5, u2(0) = 0.

The second attractive node is (−1.53981,−0.00813235) and the eigenvalues of B are:
λ1 = −1.69651 and λ2 = 4.69716. We are also in the first case, therefore λn = λ1 and
Λn = λ2. For the seventh condition, let ρ = 1/20, thus Mρ = 0.1931370848 and (11) is
satisfied because: 3.00065 > 1.1588.

Since ρ = 1/20, the initial point can be (−1.5, 0), belonging to the absorbing domain
of the second node. and also on the Ox axis. The corresponding initial conditions for (2)
are (−1.5, 4.5− 3

√
2).

In fig. 6, there are the graphical representations for the same parameters, but for the
initial conditions u1(0) = −1.5, u2(0) = 0, for 7 iterations.

For a = 0.01, b = 0.9 and c = 0.1, the eigenvalues of B are positive (first case),
λn = λ1 = 0.0913503 and Λn = λ2 = 8.8875. Let ρ = 1/3, then Mρ = 0.1931370848,
and the spectral gap condition is satisfied (it reads: 8.7961497 > 4.1551). The graphical
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Fig. 6. Graphical representation, for the FN model, of q2 = |Qu| on the AIM as a
function of t, for 7 iterations for a=0.01, b=5, c=1; u1(0) = −1.5, u2(0) = 0.

representation for u1(0) = 1, u2(0) = 0 are to be found in fig. 7. The corresponding
initial conditions for (2) are (1,−89.8874982).

−0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0.00
−1

0

1

Fig. 7. Graphical representation, for the FN model, of q2 = |Qu| on the AIM as a
function of t, for 7 iterations for a=0.01, b=0.9, c=0.1; u1(0) = 1, u2(0) = 0.
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